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Identi"cation of existing instability modes from experimental pressure
measurements of rocket engines is di$cult, specially when steep waves are present.
Actual pressure waves are often non-linear and include steep shocks followed by
gradual expansions. It is generally believed that interaction of these non-linear
waves is di$cult to analyze. A method of mode identi"cation is introduced. After
presumption of constituent modes, they are superposed by using a standard
"nite di!erence scheme for solution of the classical wave equation. Waves
are numerically produced at each end of the combustion tube with di!erent
wavelengths, amplitudes, and phases with respect to each other. Pressure
amplitude histories and phase diagrams along the tube are computed. To
determine the validity of the presented method for steep non-linear waves, the
Euler equations are numerically solved for non-linear waves, and negligible
interactions between these waves are observed. To show the applicability of this
method, other's experimental results in which modes were identi"ed are used.
Results indicate that this simple method can be used in analyzing complicated
pressure signal measurements.

( 2000 Academic Press
1. INTRODUCTION

To obtain an e!ective procedure for the design of liquid-propellant rocket engines,
the control of the combustion process is necessary. Combustion instability remains
one of the most critical problems in the development of liquid-propellant rocket
engines. This phenomenon consists of a forced oscillation of combustion gases
driven by the combustion process interacting with the resonance e!ects of the
chamber geometry [1}3].

Oscillatory operation of a rocket engine is undesirable for many reasons. One of
the most important of these is severe vibration (greater than 1000 g). Such vibration
levels can impair the operation of sensitive guidance components. Another severe
e!ect is the grossly increased heat transfer due to the oscillatory operation. This
increase is often su$cient to melt and destroy portions of the rocket system in
a fraction of a second [3, 4].

Combustion instabilities may be regarded as the unsteady motion of a dynamic
system capable of sustaining oscillations over a broad range of frequencies [5]. If
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the amplitude is small, the instability is closely related to classical acoustic behavior
occurring in the absence of combustion and mean #ow. The geometry of the
chamber is therefore a dominant in#uence. Corresponding to classical results,
travelling and standing waves are found [2, 5, 6]. They are driven by the
combustion process energy released in#uenced by the mean #ow as well as by the
conditions at the injector face and exhaust.

Under suitable circumstances the #ow of energy to the waves may dominate the
losses in such a way that non-linear behavior becomes signi"cant. In extreme cases,
shock waves may be formed. The propagation speed of disturbances is a weak
function of the amplitude, thus, the frequencies do not di!er greatly from classical
values computed for the same geometry.

There are three recognized types of the combustion instability. The "rst type is
the low-frequency instability (10}200 Hz), which is due to interactions between the
processes taking place in the combustion chamber and the propellant feed system.
The intermediate-frequency instability (200}1000 Hz) is the second type. It results
from a so-called entropy wave produced cyclically in the chamber and interacting
with the exhaust nozzle. Intermediate-frequency instability is the least frequently
observed type. The third type is the high-frequency instability (greater than
1000 Hz), which consists of excitation of acoustic vibrational modes of the
combustion chamber. This is by far the most destructive kind of instability and
hardest to control [6, 7].

In an actual engine with high-frequency instability several modes could be
present simultaneously. These modes may correspond to the longitudinal, radial or
tangential modes of the chamber. They could be of travelling or standing nature.
Pressure signal measurements from the chamber have been used to determine the
modes [3, 8, 9]. Fast Fourier transform of pressure signals, which is commonly
used for this purpose, is not su$cient when standing steep waves are present. As
will be shown in section 4.2, it may overestimate the frequency of these instability
modes. Using high-speed photography and "lm recording, luminosity from
a two-dimensional transparent-wall combustion chamber has also been used to
determine the instability modes [3, 10, 11].

A simple linear method applicable for analysis of experimental measurements
done for detection of combustion instability mode is presented. In this method, by
reconstruction of measured pressure waves and their phase variation along
the chamber, the instability modes can be identi"ed. For this purpose, by
presumption of the instability modes, the appropriate waves are produced
numerically at each end of a combustion tube with appropriate amplitude and
frequency. With these boundary conditions the classical acoustic equations are
solved. Experimentally produced amplitude and phase time histories are examined
and compared against their presumed theoretical equivalents to identify the
instability modes present.

For reconstruction of non-linear steep waves, the validity of this linear method
must be veri"ed. By numerical solution of the non-linear Euler equation,
propagation and interaction of steep waves are studied. Results indicate that the
non-linearity of waves has negligible in#uence on their mechanism of interaction.
Thus, one may superpose the non-linear waves for this particular application.
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In the following sections, numerical solution of the linear waves, validity of the
superposition assumption for non-linear steep waves and the application of the
present method in mode identi"cation, are described.

2. NUMERICAL SOLUTION OF THE LINEAR WAVES

To arrive at the classical wave equation, the mass, momentum, and energy
equations are linearized for an inviscid, adiabatic, non-reactive, and quiescent
media. The following equation is obtained:

$2p"
1
a2

L2p
Lt2

(1)

in which a is the speed of sound. This equation is written as a system of "rst order
equations

Lp
Lt

"$a
Lp
Lx

, (2)

where#and!signs pertain to right- and left-travelling waves. For discretization
of these equations, the "rst order upwind scheme is used:
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For left-travelling waves (LTW) a similar equation can be written. In the particular
case c"aDt/Dx"1, the numerical solution is the same as the exact solution of the
wave equation.

Speci"c modes are generated in a combustion tube with both ends open. A left
travelling wave with particular amplitude is generated continuously at the right
end. The left end of the tube is assumed to act as an open end with respect to this
left-travelling wave. At the same time a right-travelling wave is continuously
generated at the left end for which the right end is assumed to be open. Depending
on the mode which is to be generated, di!erent amplitude and phase can be
assigned to each of these imposed waves.

With these boundary conditions, equation (2) is solved by the above-mentioned
scheme. Pressure and phase history are computed along the tube for that particular
mode. Application of this method for interaction of non-linear waves is
questionable. This is the subject of the following section.

3. SUPERPOSITION OF THE NON-LINEAR WAVES

In the combustion chamber of rockets, the chemical reaction of propellants gives
high energy density to the compressible gases within the chamber. Combustion
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processes can couple with unsteady motion of gases. The #ow of a small portion
of the total combustion energy to the acoustic waves may dominate the losses
such that non-linear behavior becomes signi"cant and shock waves may
form. Under these conditions, the validity of results from the classical
wave equation has to be determined. It must be shown that while the formation of
steep waves are non-linear, their propagation and interaction are approximately
linear.

The propagation and interaction of non-linear steep waves are studied by
numerical solution of the non-linear Euler equation. The variation of amplitude
and area of a wave during interaction and collision with another wave are two
parameters which are used to determine the in#uence of non-linear e!ects on the
wave deformation. These parameters are computed for a wave during its
propagation, and are compared with parameters which are found for the same
wave without any collision. If the di!erence of these parameters in the two cases are
negligible, we may assume that the superposition of non-linear waves is valid for
this particular application.

3.1. NUMERICAL SOLUTION OF THE NON-LINEAR WAVES

To prove the above hypothesis, propagation and collision of non-linear waves in
a one-dimensional tube is studied by solving the Euler equations. The governing
equations is

LU
Lt

#

LF
Lx

"0, (4)

where two vectors U and F are
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in which u, E, and H are the velocity, total internal energy, and total enthalpy
respectively. For discretization on a numerical grid, equation (4) is integrated over
the ith cell, to "nd
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where S and v are the cell face area and volume respectively. According to the van
Leer #ux vector splitting [12], the #ux vectors become
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in which h is the enthalpy and M is the Mach number.
The monotone upstream-centered schemes for conservation laws (MUSCL)

method is used to increase the spatial order of accuracy [13]. In this method,
primitive variables are de"ned as follows:

U3 t"(o, u, p). (10)

The numerical #ux vector in i#1
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side is written as
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General forms of the primitive variable vectors U3 R
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the Minmod #ux limiter functions, are
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For h"1 and i"1
3
, the third order upwind is achieved. More information on this

method and the functions /~ and /` is reported by Yee [14].

3.2. THE SUPERPOSITION HYPOTHESIS OF NON-LINEAR WAVES

The coupling and mutual e!ects of a high-amplitude right- and left-travelling
wave are studied by solving the non-linear Euler equations. The superposition
hypothesis of non-linear waves is con"rmed, if interaction of the waves does not
change their shape and amplitude after they have passed over each other.

Consider a one-dimensional pipe with both ends open and an initial pressure
distribution of
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where j is the wavelength. This initial pressure distribution includes two half sine
waves at points x and x . The coe$cients p and p represent the amplitude of
R L ` ~
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the right- and left-travelling waves, respectively, and p
0

is the reference pressure. It
is assumed that p

`
"p

~
"pJ . In order to study the collision of these two waves,

initial conditions of the other properties are calculated from Riemann invariants
such that the waves positioned at x

R
and x

L
travel to left and right respectively.

Thus, initial conditions of the other properties are [15]
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where#and!indicate the properties of the right- and left-travelling waves
respectively. Neumann boundary condition is assumed on both sides of the pipe.
For small values of pJ , the shape of these waves does not change during travelling
and collision. By increasing the value of pJ , the wavefront speed increases such that
the waves quickly transform into shock and expansion waves, as shown in
Figure 1(a). For this condition, when the left-travelling wave has passed the other
wave and positioned at a particular location, its amplitude and area under the
curve are computed. Also, in the absence of the right-travelling wave, the same
values are calculated by the same method for the left-travelling wave when it is at
the same position.

The ratios of amplitude change dp/p* and area under the curve change dA/A* for
the left-travelling wave at the particular position for two di!erent conditions
mentioned above are determined. In these ratios p* and A* represent the amplitude
and area under the curve of the travelling wave just before collision with another
wave. Since the distances travelled by the wave in both cases are the same, it is
expected that the dissipation and dispersion of the numerical method is almost
cancelled out of the mentioned ratios. The computation is done for di!erent values
of p*/p

0
. Figure 1(b) shows the behavior of the dp/p* and dA/A* with respect to

p*/p
0
. As seen, even when the amplitude of the sharp wave is 2)2 times the reference

pressure, the ratios of amplitude change is only 1)6% and ratio of area change is
0)85%. Therefore, the superposition hypothesis of non-linear waves holds with
good accuracy for conditions of p*/p

0
(2. In experimental observations of liquid

rocket engine instabilities done so far, the ratio p*/p
0

is less than 1)75 [16]. Thus, it
is concluded that classical acoustic theory can be used in the analysis of the waves
coupling in the liquid rocket engines.

3.3. ANALYTICAL METHOD FOR SUPERPOSITION OF NON-LINEAR WAVES

According to the results of the previous section, the pressure "eld for a given
non-linear wave can be predicted theoretically. This method is useful for conditions
where an analytical solution is needed and also for determination of acoustic modes
present in non-linear instabilities in an engine.



Figure 1. Non-linear wave propagation. (a) Sequence of conversion of a sine wave to a steep wave.
(b) Shape deformation of a non-linear wave due to interaction with another non-linear wave with
respect to intensity of the wave.
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To simulate a cycle of sudden increase of pressure followed by a gradual
expansion, we use a cubic power function, periodically regenerated. Consider two
series of right- and left-travelling waves f and g for !R(x(#R, initially as
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j
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3
, n)

x
j
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where n is an integer parameter, varying between !R and #R. For x/j"n, f has
its minimum and g has its maximum values. For x/j"n#1, f has its maximum
and g has its minimum values. Combination of f and g in the range of 0(x/¸(1
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represents the presence of sharp waves in a pipe with a length of ¸ at t"0. To
determine the wave shape at later times, the waves represented by f and g must
travel to the right and left, respectively, which gives
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3
, n)

x!at
j

(n#1, (19)
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To generate the second mode, the wavelength must be equal to the length of the
pipe, j"¸. The other modes can similarly be generated by choosing appropriate
wavelength and phase di!erences for the f and g waves. To generate the odd modes
in a pipe with both ends closed, unlike the even modes which do not need a phase
di!erence between f and g waves, a value of j/2 must be subtracted from the
x variable of the g wave. For example to generate the third mode, the wavelength
must be (2¸/3) and (1/2)(2¸/3) must be subtracted from the x variable of the g wave.
This analytic solution may be used in analysis of combinations of non-linear
instabilities in engines. For example if some dominant non-linear unstable modes is
guessed, pressure evaluation should be compared with the corresponding analytic
solution, to see if the guess is right. If more one mode is present, it is hard to analyze
measured data.

4. APPLICATIONS IN ACTUAL SITUATIONS

To study di!erent longitudinal modes in a pipe by the method of superposition of
waves, at each end of a pipe a periodic wave with particular amplitude and
frequency is generated numerically. From the right end, left-travelling waves and
from the left end, right-travelling wave are imposed.

4.1. LINEAR WAVES

For generating the "rst longitudinal mode, harmonic waves with the same
amplitude, a wave-length twice the pipe length and a phase di!erence of n radian is
imposed on both ends of the pipe. The right- and left-travelling waves have the
following form:
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, p
~

and q are the amplitude of right- and left-travelling waves and period
of oscillation respectively. The curves representing the amplitude and phase angle
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variation with respect to x/¸ are shown in Figure 2(a) and (b). Two regions can be
identi"ed in these "gures. One region is where 0(x/¸(0)5 and the other is in
0)5(x/¸(1. Pressure reaches its limit at the same time for all points in these
regions. Pressures in these two regions are 1803 out of phase with respect to each
other. Thus, the curve representing the phase angle is a step function and can be
continued to in"nity.

To generate the second longitudinal mode, harmonic waves with the same
amplitude and a wavelength equal to the length of the pipe are imposed on both
side of the pipe. The shapes of the right- and left-travelling waves are

pAt,
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L
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`
cosA
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¸

"1B"f
R
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~
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2nt
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Figure 2. Envelope of amplitude and phase variation for "rst standing longitudinal wave in a pipe:
(a) amplitude diagram; (b) phase diagram.
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The curves indicating the amplitude and phase angle variation are shown in
Figure 3(a) and (b). For p

~
"0, only a right-travelling wave exists in the pipe. The

maximum and minimum pressures observed at di!erent points in the pipe are
constant equal to $p

`
, as shown by curve p

~
"0 in Figure 3(a). Phase di!erence

of pressure variation with respect to time at di!erent points in the pipe changes
linearly with x/¸. Since the wavelength is the same as pipe length, the phase
di!erence of pressure variation at the two ends is 3603, as shown by curve p

~
"0 in

Figure 3(b). If p
~
"p

`
, the second standing mode exists in the pipe. For this case,

two complete antinodes are observed in the envelope of amplitude variations. The
time variation of pressure at all points between nodes and antinodes are in the same
phase and are 1803 out of phase with respect to the next node and antinode. In
general, for the longitudinal standing modes there are the same number of nodes as
the order of the mode. For 0(p

~
(p

`
, the envelope of amplitude and phase

variations are between the above two extreme cases.
Right- and left-travelling waves with small frequency di!erence when entering

the pipe were studied next. The wavelength of the right- and left-travelling waves
are the same as the pipe length with a little di!erence to produce the desired
frequency shift. Therefore, this precessing wave is the same as the second
longitudinal mode, and two nodes exist in the pipe but their locations vary with
time as in Figure 4(a). In this case, periodic pulsation is observed in the pressure
variation with respect to time. From Figure 4(a) and (b), it can be observed that one
node in the pipe at t"0 is at x/¸"0)25. This node moves to the left in time and
reaches to the position x/¸"0)15 at t"1 ms as shown in Figure 4(a) and (c).

4.2. NON-LINEAR WAVES

The waves observed in the liquid-propellant rocket engines are mostly steep
waves. The compression parts of the harmonic waves grow in amplitude due to
non-linear e!ects as they propagate and become steep wave. To study this type of
waves, two steep right- and left-travelling waves with amplitudes such as p

`
"p

~
and wavelength equal to the pipe length are generated at both ends of the pipe as in
Figure 5(a). These waves are the sharpened form of the second longitudinal mode.
Since at the moment of entrance of the wave from the right end, the wave
propagating from the left exists in the same end, the amplitude becomes 2p

`
, and

the same is true for the left-end wave.
From the solution of the classical acoustic equation with the above given

boundary conditions, it is observed that unlike the standing second longitudinal
mode where two nodes existed at locations x/¸"0)25 and 0)75, no node is at these
points for the steep waves. As shown in Figure 5(b), the time variation of pressure at
these points indicates the presence of waves with a frequency twice that of entering
waves and amplitude of p

`
. From Figure 5(c) it can be seen that the time variation

of pressure at the mid point of the pipe is the same as entering waves. At intervals
0(x/¸(0)25, 0.25(x/¸(0.75 and 0)75(x/¸(1, the time variation of
pressure has two peaks. One peak corresponds to the right-travelling wave and the
other to the left-travelling wave as in Figure 5(d) and (e). As we approach points



Figure 3. Envelope of amplitude and phase variation for opposed travelling waves in a pipe:
(a) amplitude diagram; (b) phase diagram.
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x/¸"0)25 and 0)75, the distance of these peaks increases and "nally their shapes
become the same. The phase variation with respect to x/¸ is shown in Figure 5(f ).
Unlike the phase variation of second standing harmonic wave which has a stepwise
shape, for the steepened case it has a diamond shape. Phase curve varies linearly
with x/¸. This curve is similar to the phase curve for consecutive impingement and
re#ection of longitudinal waves to the walls of a closed cavity.

A case in which at the same time several modes exist in the combustion chamber
[3] is studied next. Such a condition can be observed during long operations of
engines or during transition from one mode to another mode. Figure 6(a) shows the
time variation of pressure at point x/¸"0)9. The oscillations which are repeated
continuously in this curve have eight peaks. Part (b) of Figure 6 shows the phase
variation of pressure waves measured at di!erent points of the engine. The dotted
and continuous lines represent the "rst-travelling and third-standing modes



Figure 4. Precessing second longitudinal mode instability: (a) phase diagram; (b) time variation of
pressure at x/¸"0)25; (c) time variation of pressure at x/¸"0)05.
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Figure 5. Time variation of pressure and phase diagrams for the second steep longitudinal wave in
a pipe: (a) time variation of pressure at x/¸"0)1; (b) time variation of pressure at x/¸"0)25, 0)75;
(c) time variation of pressure at x/¸"0)5;
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Figure 5. (d) Time variation of pressure at x/¸"0)05; 0)95; (e) time variation of pressure at
x/¸"0)35, 0)65; (f ) phase diagram.
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respectively. Since waves measured in the chamber are steep, the phase variation
curve is diamond shape. In order to generate the "rst mode numerically, waves with
wavelength of twice the pipe length are imposed at the two ends of the pipe and
have one period phase di!erence with respect to each other. For the third mode, the
wavelength of the imposed waves is 2

3
of the pipe length and their phase di!erence is

half of their period.
Figure 6. Pressure variation and phase diagrams for coexisting "rst and third steep longitudinal
instabilities [3]: (a) time variation of pressure at x/¸"0)9; (b) phase diagram.
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The solution to acoustic equations with above boundary conditions give the time
variation of pressure at point x/¸"0)9 and phase variation along the pipe, as
shown in Figure 7(a) and (b) respectively. The phase curve matches very well with
the results of previous work [3]. For the pressure variation at the point x/¸"0)9,
eight consecutive peaks are observed which are repeated continuously. The
amplitude of the oscillations do not match very well. However, results of the
numerical solution of the acoustic equations can be used for the identi"cation
of acoustic modes in a chamber. This method becomes complicated when
Figure 7. Computed pressure variation and phase diagrams for coexisting "rst and third steep
longitudinal instabilities: (a) time variation of pressure at x/¸"0)9; (b) phase diagram } } } } "rst
mode; ** third mode.
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interaction of higher order modes exists and other complementary methods should
be used.

5. CONCLUSION

A single measurement of pressure by a high-response pressure transducer is
su$cient to indicate the existence of combustion instability in the rocket engine.
Regardless of the diagnostic tools, exact determination of instability modes and
their identi"cation of being one of travelling, standing, spinning, and precessing
forms, need reconstruction of the waves by numerical means. This work presents
a relatively simple tool for recognition and identi"cation of various harmonic and
steep waves existing in the combustion chamber. According to the computations
and comparisons made, the principle of superposition can be used for all types of
non-linear waves observed in combustion chambers as well. Thus, at least in simple
situations, if non-linear waves are observed in pressure measurements, this method
can be used to identify the non-linear modes.
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APPENDIX: NOMENCLATURE

a velocity of sound, m/s
c Courant number
E total internal energy, kJ/kg
F components of #ux vector
F #ux vector
F3 numerical #ux vector
H total enthalpy, kJ/kg
H enthalpy, kJ/kg
i cell index
¸ tube length, m
M Mach number, u/a
p pressure, Pa
S cell face area, m2
¹ temperature, K
t time, s
U vector of conservative variables
U3 vector of primitive variables
u velocity, m/s
v volume, m3
x axial position, m

GREEK LETTERS

c speci"c heat ratio
D di!erence
h parameter in equations (12), (13)
i parameter in equations (12), (13)
j wavelength, m
o density, kg/m3
q wave period, s
/ #ux limiter vector



SUBSCRIPT AND SUPERSCRIPT

MODE IDENTIFICATION OF PRESSURE WAVES 991
¸ left side
0 reference values
R right side
# right-travelling wave
! left-travelling wave
* amplitude of pressure oscillation
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